Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014066

RESUMEN

Alphaviruses are arthropod-borne enveloped RNA viruses that include several important human pathogens with outbreak potential. Among them, eastern equine encephalitis virus (EEEV) is the most virulent, and many survivors develop neurological sequelae, including paralysis and intellectual disability. The spike proteins of alphaviruses comprise trimers of heterodimers of their envelope glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), two closely related proteins that are expressed in the brain, as cellular receptors for EEEV and a distantly related alphavirus, Semliki forest virus (SFV) 1 . The EEEV and SFV spike glycoproteins have low sequence homology, and how they have evolved to bind the same cellular receptors is unknown. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain. The structures reveal that EEEV and SFV use distinct surfaces to bind VLDLR; EEEV uses a cluster of basic residues on the E2 subunit of its spike glycoprotein, while SFV uses two basic residues at a remote site on its E1 glycoprotein. Our studies reveal that different alphaviruses interact with the same cellular receptor through divergent binding modes. They further suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.

3.
Nat Commun ; 13(1): 558, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091550

RESUMEN

Five New World mammarenaviruses (NWMs) cause life-threatening hemorrhagic fever (HF). Cellular entry by these viruses is mediated by human transferrin receptor 1 (hTfR1). Here, we demonstrate that an antibody (ch128.1/IgG1) which binds the apical domain of hTfR1, potently inhibits infection of attenuated and pathogenic NWMs in vitro. Computational docking of the antibody Fab crystal structure onto the known structure of hTfR1 shows an overlapping receptor-binding region shared by the Fab and the viral envelope glycoprotein GP1 subunit that binds hTfR1, and we demonstrate competitive inhibition of NWM GP1 binding by ch128.1/IgG1 as the principal mechanism of action. Importantly, ch128.1/IgG1 protects hTfR1-expressing transgenic mice against lethal NWM challenge. Additionally, the antibody is well-tolerated and only partially reduces ferritin uptake. Our findings provide the basis for the development of a novel, host receptor-targeted antibody therapeutic broadly applicable to the treatment of HF of NWM etiology.


Asunto(s)
Antígenos CD/metabolismo , Arenaviridae/metabolismo , Fiebre Hemorrágica Americana/metabolismo , Receptores de Transferrina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células A549 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Antígenos CD/inmunología , Arenaviridae/efectos de los fármacos , Arenaviridae/fisiología , Chlorocebus aethiops , Fiebre Hemorrágica Americana/prevención & control , Fiebre Hemorrágica Americana/virología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Virus Junin/efectos de los fármacos , Virus Junin/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Receptores de Transferrina/antagonistas & inhibidores , Receptores de Transferrina/inmunología , Células Vero
4.
Nature ; 602(7897): 475-480, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929721

RESUMEN

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Asunto(s)
Mosquitos Vectores , Virus de los Bosques Semliki , Animales , Proteínas Relacionadas con Receptor de LDL , Ligandos , Ratones , Receptores de LDL , Virus de los Bosques Semliki/metabolismo , Virus Sindbis/fisiología
5.
Science ; 375(6578): eabl6251, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34855508

RESUMEN

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Evasión Inmune , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Vacuna BNT162/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas , Microscopía por Crioelectrón , Cristalografía por Rayos X , Epítopos , Evolución Molecular , Humanos , Modelos Moleculares , Mutación , Polisacáridos/análisis , Unión Proteica , Dominios Proteicos , Receptores de Coronavirus/química , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Pseudotipado Viral
6.
J Virol ; 95(17): e0186820, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132574

RESUMEN

Pathogenic clade B New World mammarenaviruses (NWM) can cause Argentine, Venezuelan, Brazilian, and Bolivian hemorrhagic fevers. Sequence variability among NWM glycoproteins (GP) poses a challenge to the development of broadly neutralizing therapeutics against the entire clade of viruses. However, blockade of their shared binding site on the apical domain of human transferrin receptor 1 (hTfR1/CD71) presents an opportunity for the development of effective and broadly neutralizing therapeutics. Here, we demonstrate that the murine monoclonal antibody OKT9, which targets the apical domain of hTfR1, can sterically block cellular entry by viral particles presenting clade B NWM glycoproteins (GP1-GP2). OKT9 blockade is also effective against viral particles pseudotyped with glycoproteins of a recently identified pathogenic Sabia-like virus. With nanomolar affinity for hTfR1, the OKT9 antigen binding fragment (OKT9-Fab) sterically blocks clade B NWM-GP1s and reduces infectivity of an attenuated strain of Junin virus. Binding of OKT9 to the hTfR1 ectodomain in its soluble, dimeric state produces stable assemblies that are observable by negative-stain electron microscopy. A model of the OKT9-sTfR1 complex, informed by the known crystallographic structure of sTfR1 and a newly determined structure of the OKT9 antigen binding fragment (Fab), suggests that OKT9 and the Machupo virus GP1 share a binding site on the hTfR1 apical domain. The structural basis for this interaction presents a framework for the design and development of high-affinity, broadly acting agents targeting clade B NWMs. IMPORTANCE Pathogenic clade B NWMs cause grave infectious diseases, the South American hemorrhagic fevers. Their etiological agents are Junin (JUNV), Guanarito (GTOV), Sabiá (SABV), Machupo (MACV), Chapare (CHAV), and a new Sabiá-like (SABV-L) virus recently identified in Brazil. These are priority A pathogens due to their high infectivity and mortality, their potential for person-to-person transmission, and the limited availability of effective therapeutics and vaccines to curb their effects. While low homology between surface glycoproteins of NWMs foils efforts to develop broadly neutralizing therapies targeting NWMs, this work provides structural evidence that OKT9, a monoclonal antibody targeting a single NWM glycoprotein binding site on hTfR1, can efficiently prevent their entry into cells.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Arenavirus del Nuevo Mundo/fisiología , Glicoproteínas/inmunología , Fiebre Hemorrágica Americana/prevención & control , Receptores de Transferrina/inmunología , Células A549 , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Humanos , Estructura Terciaria de Proteína , Receptores de Transferrina/química , Receptores de Transferrina/genética
7.
Cell ; 184(10): 2605-2617.e18, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33831372

RESUMEN

Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wild-type virus neutralization but is critical to neutralization breadth. Because the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19 , Evolución Molecular , Evasión Inmune/inmunología , Huésped Inmunocomprometido , Fragmentos Fab de Inmunoglobulinas/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , COVID-19/genética , COVID-19/inmunología , Femenino , Células HEK293 , Humanos , Masculino , Dominios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
bioRxiv ; 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33200128

RESUMEN

The SARS-CoV-2 viral spike (S) protein mediates attachment and entry into host cells and is a major target of vaccine and drug design. Potent SARS-CoV-2 neutralizing antibodies derived from closely related antibody heavy chain genes (IGHV3-53 or 3-66) have been isolated from multiple COVID-19 convalescent individuals. These usually contain minimal somatic mutations and bind the S receptor-binding domain (RBD) to interfere with attachment to the cellular receptor angiotensin-converting enzyme 2 (ACE2). We used antigen-specific single B cell sorting to isolate S-reactive monoclonal antibodies from the blood of a COVID-19 convalescent individual. The seven most potent neutralizing antibodies were somatic variants of the same IGHV3-53-derived antibody and bind the RBD with varying affinity. We report X-ray crystal structures of four Fab variants bound to the RBD and use the structures to explain the basis for changes in RBD affinity. We show that a germline revertant antibody binds tightly to the SARS-CoV-2 RBD and neutralizes virus, and that gains in affinity for the RBD do not necessarily correlate with increased neutralization potency, suggesting that somatic mutation is not required to exert robust antiviral effect. Our studies clarify the molecular basis for a heavily germline-biased human antibody response to SARS-CoV-2.

9.
Nat Commun ; 9(1): 1884, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760382

RESUMEN

While five arenaviruses cause human hemorrhagic fevers in the Western Hemisphere, only Junin virus (JUNV) has a vaccine. The GP1 subunit of their envelope glycoprotein binds transferrin receptor 1 (TfR1) using a surface that substantially varies in sequence among the viruses. As such, receptor-mimicking antibodies described to date are type-specific and lack the usual breadth associated with this mode of neutralization. Here we isolate, from the blood of a recipient of the live attenuated JUNV vaccine, two antibodies that cross-neutralize Machupo virus with varying efficiency. Structures of GP1-Fab complexes explain the basis for efficient cross-neutralization, which involves avoiding receptor mimicry and targeting a conserved epitope within the receptor-binding site (RBS). The viral RBS, despite its extensive sequence diversity, is therefore a target for cross-reactive antibodies with activity against New World arenaviruses of public health concern.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Arenavirus del Nuevo Mundo/inmunología , Fiebre Hemorrágica Americana/prevención & control , Fragmentos Fab de Inmunoglobulinas/química , Virus Junin/inmunología , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Arenavirus del Nuevo Mundo/genética , Sitios de Unión de Anticuerpos , Reacciones Cruzadas , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Humanos , Sueros Inmunes/química , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Virus Junin/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/inmunología , Receptores de Transferrina/química , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...